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Abstract

When the thermally induced stress in a shrinking pavement layer reaches the tensile strength of asphalt, regularly

spaced thermal cracks form across the width of the pavement. A one-dimensional analytical solution for the stress

distribution in a thermally shrinking elastic pavement layer placed on an elastoplastic, cohesive–frictional base is de-

veloped and validated by comparison with a 2D numerical solution. From the analytical model, a prediction of a length

parameter that provides bounds on the thermal crack spacing is obtained. Predicted bounds on crack spacing are

validated by comparison with field observations. It is demonstrated that the proposed formulation can also be applied

to estimate the average crack density observed in thin ceramic films subjected to the application of an axial strain; in the

latter system, the crack spacing is six decades smaller than that observed in pavement systems.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When natural and engineered systems are subjected to shrinkage––driven by cooling or drying––the

resulting stresses may lead to the formation of cracks. In many cases these cracks form patterns, which

exhibit distinct length scales. The drying of mud is a classic example of this phenomenon (Bejan, 1999;

Gabrielli et al., 1999; Horgan and Young, 2000). A keen area of research in engineered systems looks at the

cracking patterns in thin films. When thin glass strips are exposed to a thermal gradient (Ronsin and Perrin,
1997) or thin colloidal suspensions are dried (Boeck et al., 1999), uniformly spaced longitudinal cracks form

parallel to the direction of the temperature or moisture gradient. Alternatively, when thin film coatings are

subjected to the application of an axial strain (which can be caused by a thermal or drying shrinkage)

transverse cracks, normal to the direction of the applied strain, form at regular intervals (Agrawal and Raj,

1989; Su et al., 1998; Chen et al., 1999, 2000; Handge et al., 2001).

The focus of this paper is the development of a mathematical model to predict the length scale for the

spacing of transverse cracks that form in a coating subjected to an axial strain. In a departure from previous
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work in this area (Agrawal and Raj, 1989; Chen et al., 1999, 2000), our engineering motivation for the study

is not an improved understanding of thin film coatings but an understanding of how so-called thermal

cracks, a feature of cold climates, form in asphalt pavements placed on a granular base (Marker, 1966;

Zube, 1966; Kelley, 1966; Hills and Brien, 1966; Hiltunen and Roque, 1994; Timm, 2001). Typically, these

cracks form after an extreme cooling event and extend across the width of the pavement. Such cracks not

only affect the ride quality of the pavement, but also allow for the infiltration of water, which results in a

rapid deterioration of the pavement structure. Fig. 1 illustrates a typical thermal cracking pattern observed

on a section (150 m long and 7.5 m wide) of interstate road in Minnesota; these cracks formed in a single
cooling event in the winter of 1996 when the surface pavement temperature dropped below )30 �C.

The central contribution of this paper is the development of an analytical one-dimensional model that

predicts bounds on the thermal crack spacing in a cooled section of asphalt pavement. In this development

it is assumed that a Winkler-type foundation (Hetenyi, 1946), augmented by a cohesive–frictional interface,

can be used to model the interaction between the asphalt pavement and its granular base. The resulting

model is validated by comparison with a 2D finite difference analysis and field observations of thermal

cracks in asphalt pavements.

Although thermal cracking of pavements occurs at a larger scale than the cracking of thin films (meters
as opposed to micrometers), the fundamental problem components are the same, i.e. a relatively thin

coating (the asphalt lift) placed on a thicker substrate (the granular base) subjected to an axial strain. As

such, it is expected that the pavement thermal cracking model should also be applicable to situations in-

volving thin film coatings. This point is demonstrated, at the conclusion of the paper, by using the model to

successfully predict the average crack spacing observed in titanium nitride (TiN) ceramic coatings subjected

to an applied axial strain (Chen et al., 1999, 2000); a problem where the crack spaces are six orders of

magnitude smaller than those found in pavements.

2. Formulation of the problem

To examine the fundamental nature of thermal cracking in pavement systems, it is useful to consider the
distribution of thermal stresses in an elastic strip (length k, width w, thickness h, Young�s modulus E,

Fig. 1. Thermal cracking map of an asphalt pavement section.
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Poisson�s ratio m, coefficient of thermal expansion a, and unit weight c) subjected to a negative temperature

change DT < 0 while resting upon a dissimilar elastoplastic solid (herein referred to as the base). In this set

up, it is assumed that the asphalt is sufficiently cooled so that viscous effects can be neglected. Further, to

reflect the granular or clayey make up of the base layer, shear stresses in the base are assumed to be limited

from above according to the Mohr–Coulomb failure criterion.

Under the assumption of negligible transverse tensile stress in the cooling layer, an analytical treatment

of the foregoing problem can be obtained by approximating the system by an elastic rod with Young�s
modulus Er ¼ E, restrained axially by a Winkler-type foundation (e.g. Hetenyi, 1946). To allow for the
slippage between the rod and the base, the Winkler foundation is augmented by a cohesive–frictional in-

terface, as indicated schematically in Fig. 2, via slider elements interposed between the rod and the spring

units. In what follows, it is assumed that the rod is sufficiently thin so that the bending effects due to the

eccentric nature of the Winkler-type restraint can be neglected. On denoting the axial displacement in the

rod by ux, the reaction per unit length of the augmented Winkler foundation can be formally written as

RxðxÞ ¼
kux; juxj < Rf

x=k;
Rf
x signux; juxjPRf

x=k;

�
06 x6 k ð1Þ

for the case of monotonic thermal loading, where k stands for the elastic spring coefficient (dimension force/

length2), and Rf
x is the maximum shear resistance sustained by the sliders. In the spirit of the Mohr–

Coulomb failure criterion, Rf
x is taken as

Rf
x ¼ wsf ¼ wðcþ pz tan/Þ ¼ wðcþ ch tan/Þ; 06 x6 k; ð2Þ

where sf is the interfacial shear stress at failure, pz ¼ ch is the normal stress exerted on the Winkler

foundation due to the weight of the rod, and c and / denote the cohesion and friction angle of the base

material, respectively.

With reference to Fig. 2, application of a uniform temperature change DT < 0 to the rod results in its net

shrinkage and the subsequent development of shear stresses along the rod–base interface. Depending on

DT , the resulting reaction of the base can be either purely elastic or elastoplastic. Solutions for the stress
distribution, for both cases, are developed below. On noting the symmetry of the problem, which requires

that uxðk � xÞ ¼ �uxðxÞ, these analyses will be focused on the half-rod domain, 06 x6 k=2.

3. Restrained rod model I: elastic support

Under the assumption that the longitudinal displacements in the rod are sufficiently small so that the
foundation resistance is purely elastic, the equilibrium equation governing the rod response due to cooling

can be written as

Fig. 2. Elastic rod resting on an elastoplastic foundation.

D.H. Timm et al. / International Journal of Solids and Structures 40 (2003) 125–142 127



drx

dx
¼ kux

wh
; 06 x6 k=2; ð3Þ

where k is the spring coefficient of the base foundation. With the aid of the uniaxial thermoelastic con-

stitutive relation for the rod, namely

rx ¼ Er

dux
dx

�
� aDT

�
; 06 x6 k=2 ð4Þ

the general solution to (3), in terms of ux, can be written as

uxðxÞ ¼ C1e
bx þ C2e

�bx; b ¼
ffiffiffiffiffiffiffiffi
k

ErA

r
; 06 x6 k=2; ð5Þ

where A ¼ wh denotes the cross-sectional area of the rod, and C1 and C2 are the constants of integration.

On imposing the boundary conditions rxð0Þ ¼ 0 and uxðk=2Þ ¼ 0, the distribution of thermally induced

axial displacements and stresses in the elastically supported rod can be shown, by virtue of (4) and (5), to

admit the representation

uxðxÞ ¼
aDT

bð1þ e�bkÞ ðe
�bðk�xÞ � e�bxÞ;

rxðxÞ ¼ EraDT
1

1þ e�bk
ðe�bðk�xÞ

�
þ e�bxÞ � 1

�
; 06 x6 k=2:

ð6Þ

On the basis of (6a), the restriction on the no-slip assumption, namely kuxð0Þ < Rf
x , can be written explicitly

as

k <

1; gP 1;
1

b
log

1þ g
1� g

� �
; g < 1;

8><
>: g ¼ bsfw

kað�DT Þ : ð7Þ

Eq. (7) quantifies an intuitive notion of the threshold interface strength sf ¼ gkað�DT Þ=ðbwÞ that would,
for a given thermal loading, preclude the occurrence of the rod-foundation slip regardless of k.

In Fig. 3, the distribution of thermal stresses in the rod is plotted as a function of the segment length k
and the foundation-rod stiffness ratio b. From the display, it can be seen that the rate of change of axial
stress in the rod (barring any interfacial slip) near the free ends increases with the normalized foundation

Fig. 3. Distribution of thermal stresses in a restrained rod: elastic case.
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stiffness b. For further reference, one may also note from (6b) that the maximum tensile stress in the rod for

the case of elastic resistance is given by

rx;max ¼ rxðk=2Þ ¼ EraDT
1

coshðbk=2Þ

�
� 1

�
: ð8Þ

4. Restrained rod model II: elastoplastic support

In situations when the rod length exceeds the limit for the elasticity assumption given by (7), thermally

induced reaction of the Winkler foundation in Fig. 2 can be divided into two distinct areas, namely (i) the
sliding region, and (ii) the non-slip, i.e. elastic reaction zone as shown in Fig. 4. In region I (06 x < xt), axial
displacements in the rod (ux) are sufficient to cause slippage along the slider–spring support so that Rx ¼ Rf

x ,

whereas region II (xt < x6 k=2) is characterized by the elastic foundation resistance with Rx ¼ kux.

4.1. Region I––sliding resistance

With reference to Fig. 4, axial stress in the rod for x < xt caused by the constant base reaction (2) can be

shown to admit the linear representation

rxðxÞ ¼
sf
h
x ¼ c

h

�
þ c tan/

�
x; 0 < x < xt ð9Þ

from which it is apparent that the rate of increase of axial stress in region I is directly proportional to the

maximum shear resistance (sf ) of the Winkler-type foundation.

4.2. Region II––linear elastic resistance

Owing to the presence of axial restraint, it is reasonable to expect the existence of an interior region in
the rod away from the free end (xt < x6 k=2) where the longitudinal displacements in the thermally

shrinking rod are sufficiently small so that ux < Rf
x=k. Following the earlier developments, the solution for

region II can be written as

uxðxÞ ¼ C1e
bx þ C2e

�bx; b ¼
ffiffiffiffiffiffiffiffi
k

ErA

r
; xt < x6 k=2: ð10Þ

To determine C1 and C2, one may observe with reference to Fig. 4 that

Fig. 4. Reaction of the Winkler-type foundation due to uniform cooling of the rod.
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uxðxþt Þ ¼
sfw
k

; uxðk=2Þ ¼ 0; ð11Þ

where the first equation indicates that the composite Winkler foundation is on the verge of failure at

the transition point. In applying the Dirichlet boundary conditions (11), however, it should be noted that

the position of transition x ¼ xt is unknown a priori. To establish an additional equation necessary for the

solution of the problem, it is instructive to invoke the continuity of axial stresses in the rod, which, through

(9), requires that

rxðxþt Þ ¼ rxðx�t Þ ¼
sfxt
h

: ð12Þ

By virtue of (4) and (10)–(12), the axial displacement and stress fields in region II can be solved as

uxðxÞ ¼
aDT ð1� bgxtÞ

bðe�bðk�xtÞ þ e�bxtÞ ðe
�bðk�xÞ � e�bxÞ;

rxðxÞ ¼ EraDT
1� bgxt

e�bðk�xtÞ þ e�bxt
ðe�bðk�xÞ

�
þ e�bxÞ � 1

�
; xt < x6 k=2;

ð13Þ

where b is defined in (10), and xt is given by the implicit formula

xt ¼
k
2
� 1

2b
log

1� bgxt þ g
1� bgxt � g

� �
; 0 < g < 1; 0 < xt < k=2: ð14Þ

Eq. (14) can be solved via the bisection method.

On the basis of (9) and (13), the axial stress distribution in the rod for the elastoplastic case takes the

characteristic form of an initial linear portion and an exponential ‘‘cap’’ as pictured in Fig. 5. As can be
seen from the display, an increase in the normalized foundation strength g effectively increases the axial

stress in the rod and shortens region I. Conversely, an increase in the normalized elastic stiffness b of the

Winkler foundation can be shown to inherently accelerate an exponential approach towards the maximum

stress in the rod given by

rx;max ¼ rðk=2Þ ¼ EraDT
1� bgxt

coshðbðk=2� xtÞÞ

�
� 1

�
: ð15Þ

Fig. 5. Distribution of thermal stresses in a restrained rod: elastoplastic case.
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5. Thermal gradient correction

Owing to its reduced dimensionality, the analytical model described above makes no provision for the

presence of thermal gradients across the layer thickness. As a result, the temperature change DT in the 1D
formulation inherently refers to the mid-fiber of the surface layer. Depending on the rate of cooling,

however, a noticeable temperature difference, T1 < T2 < T0 may develop across the pavement layer thick-

ness as depicted in Fig. 6. In such situations, it is possible to consistently account for the thermal gradient

by adding the bending stress contribution to the mid-fiber solutions (6b), (9) and (13b) as a means to esti-

mate the maximum stress in the extreme top fiber. This bending stress correction, which accounts for a

temperature difference, can be calculated as EraðT2 � T1Þ=2, yielding the following expressions for the axial

stress in the top fiber of the rod

rtop
x ðxÞ ¼

c
h
þ ct tan/

� �
xþ EraðT2 � T1Þ

2
; 06 x6 xt;

EraDT
1� bgxt

e�bðk�xtÞ þ e�bxt
ðe�bðk�xÞ þ e�bxÞ � 1

� �
þ EraðT2 � T1Þ

2
; xt 6 x6 k=2:

8>><
>>: ð16Þ

These equations are applicable to both no-slip (i.e. xt ¼ 0) and partial slip (xt > 0) interfacial conditions.

With reference to (8) and (15), the maximum stress in the rod that accounts for the existence of thermal
gradients can be written jointly as

rtop
x;max ¼ rx;max þ

EraðT2 � T1Þ
2

: ð17Þ

Note that a model that is similar to (16), although without an account for the thermal gradients, has

been recently presented by Zhang and Li (2001) for the shrinkage-induced stresses in concrete pavements.

The relationship in (16) was developed under the plain stress condition (i.e. zero lateral restraint in the

top layer). By accounting for the Poisson�s effect, however, it can also be applied to plane strain problems

through the definition of an effective Young�s modulus of the rod, Er (e.g. Malvern, 1969). On associating

aDT in (16) with the concept of initial strain (see Zienkiewicz and Taylor, 1989), such a generalization can
be effected by writing

Er ¼

E; plane stress condition in the top layer subject to isotropic initial strain;

E
1� m

; plane strain condition in the top layer subject to isotropic initial strain;

E
1� m2

; plane strain condition in the top layer subject to axial initial strain;

8>>>><
>>>>:

ð18Þ

where E and m denote the Young�s modulus and Poisson�s ratio of the top layer, respectively.

Fig. 6. Temperature variation across thickness of the pavement layer.
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6. Calculation of the foundation stiffness

The applicability of the proposed approach, to a given situation, rests on establishing an appropriate

expression for the Winkler foundation stiffness, manifest in the parameters k or b. A general treatment is to
consider a benchmark system and restrict k in the restrained rod model to match its overall stiffness to that

of the benchmark system. For the pavement cooling problem, an optimal benchmark would be that of an

elastic half-space or stratum subjected to self-equilibrating shear surface tractions distributed over a

rectangular area. Unfortunately, this problem does not have a closed-form solution and alternative

benchmarks need to be sought.

One convenient choice for a benchmark suited for the pavement cooling problem is the plane-strain

model illustrated in Fig. 11a of Appendix A. With reference to the Figure, matching the quarter-

span horizontal displacements of the half-plane model to that of the Winkler foundation (see Appendix A)
yields

b ¼
ffiffiffiffiffiffiffiffi
k

ErA

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pEb

khErð1� m2bÞð4þ 3 log 3Þ 1þ ð4þ 3 log 3Þð1� mbÞ
8p

k
hb

� �s
; ð19Þ

where Eb and mb denote the Young�s modulus and Poisson�s ratio of the base, respectively. The last com-

ponent in (19) is a ‘‘correction’’ term that accounts for situations where the base is an elastic stratum of

finite thickness, hb. It is introduced by interpolating between the available limiting solutions for k=hb ! 0

(i.e. half plane) and hb=k ! 0 (shallow stratum).

7. Comparison with 2D simulations

To evaluate the ability of the proposed analytical model to simulate the axial stress distribution in a thin

layer supported by a cohesive-frictional continuum, a comparison is made with a plane-strain numerical

simulation, generated via a commercially available finite difference code, FLAC (Coetzee et al., 1995). The

2D model geometry and boundary conditions are illustrated in Fig. 7, with the top layer fully bonded to

the base. In contrast to the top layer, which is modeled as an elastic material, the constitutive behavior of

the base layer is assumed to be elastoplastic with an associated flow rule according to the Mohr–Coulomb

model. This model is characterized by the Young�s modulus Eb, Poisson�s ratio mb, cohesion c, and the angle

of internal friction /. To expose the effects of relative thermal shrinkage, the coefficient of thermal ex-
pansion for the base material, ab, is set to zero in the (numerical) cooling experiment.

The data for the comparison between the 1D analytical and 2D numerical model is given in the first two

columns of Table 1. The entries are consistent with values that might be found in an asphalt pavement

placed on a dry granular base (Timm, 2001). Following earlier developments, the Young�s modulus of the

rod for the 1D model is calculated via (18b), where E and m denote the Young�s modulus and Poisson�s ratio

Fig. 7. 2D finite difference model.
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of the top layer in the plane-strain solution, respectively. A typical comparison for the case with no tem-
perature difference (i.e. T1 ¼ T2) in the top layer is illustrated in Fig. 8. The result clearly shows the ability of

the analytical model to approximate thermal stress distribution in a pavement continuum. One may also

observe that the conditions assumed in the figure are such that the transition from the plastic to elastic

foundation response occurs at x ¼ xt 	 20 m. A sample comparison between the 1D analytical model (16)

and the 2D numerical solution for the case involving a temperature difference across the layer thickness is

shown in Fig. 9. The response of the base in this case remains fully elastic. Once again, despite the sim-

plifications underlying the analytical model, agreement with the numerical results is reasonable. Further,

Fig. 9 illustrates the importance of accounting for the thermal gradient on comparing the top and mid-fiber
solutions.

Table 1

Pavement data

Value Fig. 8 Fig. 9 Table 2

E 14.0 GPa 6.9 GPa 14.0 GPa

m 0.20 0.35 0.20

c 21.6 kN/m3 21.6 kN/m3 21.6 kN/m3

a 2:15
 10�5 1/K 1:0
 10�5 1/K 1:8
 10�5 1/K

S – – 1.9 MPa

h 0.15 m 0.30 m 0.15 m

w 1.0 m 1.0 m 7.5 m

Eb 0.55 GPa 0.275 GPa 5.5 GPa

mb 0.4 0.4 0.4

cb 19.6 kN/m3 19.6 kN/m3 –

c 10 kPa 0 15 kPa

/ 20� 70� 30�
hb 2.0 m 2.0 m 2.0 m

DT )5.0 K )2.5 K )15.0 K

T2 � T1 0 K 4.17 K 8.0 K

[
]

Fig. 8. Comparison between 1D and 2D solutions with no temperature gradient.
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8. Prediction of bounds on crack spacing

The results derived in previous sections provide, for a given temperature drop DT , the value of the

maximum stress in a pavement section of length k. This analysis, however, can also be used in an inverse

sense to provide for a given DT , the section length, ks, for which the maximum thermal stress reaches the

tensile strength of the pavement, S. Below it is shown that this length scale can be used to provide bounds
on the crack spacing in an initially undamaged pavement section of arbitrary length L, subjected to thermal

shrinkage.

Consider an initially undamaged pavement section of length L. The pavement is cooled through a

temperature drop DT at its mid-fiber, with a possible thermal gradient across its thickness. If at any time

during the cooling process, the axial stress in the top pavement fiber (rtop
x ) reaches the given tensile strength

S, a crack will form. In the absence of material flaws, symmetry considerations suggest that the crack will

form at the mid point, splitting the undamaged section into two equal parts. For simplicity of presentation,

it will be assumed that the stress distribution in the newly created undamaged sections can be approximated
via (16) with k corresponding to the (new) intact segment length. With subsequent cooling, the cracking and

subdividing of the pavement section will continue until the maximum tensile stress between two neigh-

boring cracks falls below the strength S. At this point the crack spacing, equidistant along L, will take the
value L=ðnþ 1Þ where nP 0 is the total number of cracks that have formed. If at any stage in the cracking

process the crack spacing is larger than ks, then, by definition of ks, the maximum stress rtop
x;max in each sub-

section would reach the tensile strength S and additional cracking and sub-division will occur. Clearly the

new spacing that results from this additional sub-division will be larger than ks=2. On the other hand, if the

spacing is less than ks, the maximum stress will be below the tensile strength and further cracking cannot be
achieved. Hence for an arbitrary section with initial length L > ks, the final crack spacing achieved, ko, will

be bounded by

ks

2
< ko

�
¼ L

nþ 1

�
< ks ) �kko ¼ 0:75ks; ð20Þ

where �kko denotes the average crack spacing. Note that (20), similar to an expression proposed by Agrawal

and Raj (1989) for ceramic coatings, does not account for residual stresses and is therefore strictly valid

Fig. 9. Comparison between 1D and 2D solutions with temperature gradient.
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only in the limit cases of a pure elastic or rigid plastic base support. It is expected, however, that (20) can

also be used, as a first-order approximation, for intermediate cases involving elastoplastic support. Below,

this hypothesis will be tested against the published experimental data.

8.1. Solution for the length scale ks

On taking the limit of (8), (15) and (17) as k ! 1, one may observe that, for a given DT , cracking of a

pavement section is possible only if

w �
S � aEðT2�T1Þ

2

að�DT ÞE < 1: ð21Þ

With such an assumption and the requirement rtop
x;max ¼ S, the length scale ks for the non-slip case can be

derived from (8) and (17) as

ks ¼
2

b
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w � w2

q
1� w

0
@

1
A ð22Þ

provided that

ks <
1; gP 1;
1

b
log

1þ g
1� g

� �
; g < 1

8<
: ð23Þ

with g given by (7). For any given combination of material parameters governing the rod response, in-

consistency of (22) and (23) implies the necessity of employing the elastoplastic solution in calculating ks.

On the basis of (15) and (17), the partial slip solution can be shown to yield

ks ¼ 2xt þ
2

b
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�w

1�bgxt

� �2
r

1�w
1�bgxt

0
BB@

1
CCA: ð24Þ

It should be noted that xt in (24) depends in turn on k ¼ ks via (14). Moreover, the value of the relative

foundation stiffness b, given by (19), is intrinsically dependent on the choice of the representative rod

length, which is for consistency taken as k ¼ 2ks, i.e. the maximum intact segment length just before the

terminal subdivision (i.e. cracking) event that results in ks as given by (22) or (24). Hence a recursive so-
lution is required to determine the length scale in situations involving both no-slip and partial slip between

the rod and its foundation.

8.2. Limits on the length scale

In the limit as DT ! �1, the values g and w (see (7) and (21)) both approach zero, and the crack

spacing (24) reaches the limiting value ks ! 2xt from above. In this limit, the slip zone will extend the entire

inter-crack space, and from (16a) it can be determined that, for a given thermal difference T2 � T1 across the
pavement thickness,

klim
s ¼ f2S � aEðT2 � T1Þgh

sf
ð25Þ
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is a lower bound, independent of DT , on the crack spacing length scale. Depending on the geometric and

material properties in a pavement system, this full-slip limit can be approached at relatively moderate mid-

fiber values of axial strain, e ¼ Eað�DT Þ. On employing the definition b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðErAÞ

p
and (24), it is also

interesting to observe that, for any DT < 0, (25) simultaneously represents the limit of ks as the base stiffness
approaches infinity, i.e. k ! 1.

8.3. Comparison with pavement field data

A critical test for the proposed model of thermal cracking is to compare (19) through (24) with field

observations. Particular emphasis is placed on obtaining theoretical bounds which match the order of the

crack spacing observed in the field. Timm (2001) carried out a statistical analysis of pavement sections at

the Minnesota Road (Mn/ROAD) testing facility. A cracking map from one of these test sites is shown in

Fig. 1. The average spacing and standard deviations for the three sections (which all have asphalt thickness

h ¼ 0:15 m) are given in Table 2; the observed scatter can be explained in terms of a distribution of flaws in

the actual pavement structure.
Appropriate material data for the analysis of field test sections are given in the last column of Table 1. It

should be noted that in this field study the granular base was wet and frozen, which accounts for the high

value of the base Young�s modulus, Eb. The value of DT ¼ �15 K corresponds to the measured maximum

daily temperature change during the time that the cracks appeared in the pavement, and the value of

T2 � T1 ¼ 8 K is temperature drop across the pavement thickness, provided by thermocouple measure-

ments. A full rational and sources used in the choice of the data in Table 1 are documented in Timm (2001).

Substitution of the values in Table 1 into (19)–(24) yields the crack spacing length scale ks ¼ 15:92 m; as a

result, the predicted bounds on the crack spacing are

7:96 m < ko < 15:92 m: ð26Þ

Thus the proposed model provides coverage of the field observed values (see Table 2) and the crack spacing

predictions match the order of those observed in the field.

In (26), the benchmark model used to determine the Winkler foundation stiffness is the plane strain
model (19), which would underestimate k derived from a more refined 3D benchmark solution for an elastic

stratum involving surface tractions distributed over a rectangular area. It should be noted, however, that

due to the frozen and stiff nature of the base, the crack-spacing result in (26) is close to its rigid-base

(saturation) limit stemming from (25), namely

7:93 m < ksat
o < 15:86 m: ð27Þ

As a result, the use of three-dimensional elastostatic benchmarks as a tool to estimate k, which would

geometrically be more appropriate for the problem of interest, would only reduce already minor differences

between (26) and (27).

Table 2

Field observed crack spacing

Cell Average spacing (m) Standard deviation (m)

1 12 4.88

2 8 4.27

3 13 8.23
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9. Thin films

Although the prior analysis has been constructed for the case of a thermally shrinking asphalt pavement

placed on a cohesive-frictional base, the featured thermal crack spacing model (19)–(24) should also be
applicable to the case of thin elastic films on a strained ductile metal substrate. This contention is supported

by research in the thin film area where a slip zone near the cracks has been hypothesized (Hu and Evans,

1989).

In order to extend the thermal crack model to the thin film case, the friction angle of the base is set to

zero, i.e. / ¼ 0 so that the cohesion c can be identified with the ultimate shear strength of the metal

substrate (Chen et al., 1999, 2000).

To demonstrate the thin film application of the thermal cracking model, it is useful to consider the

experimental set up reported by Chen et al. (1999, 2000) of a titanium-nitride (TiN) ceramic coating de-
posited on a 304 stainless steel ‘‘dog bone’’ substrate and subjected to an increasing axial strain. The

geometric data for the experimental set up is given in Table 3 where H , k, and w refer to the thickness,

length, and width of the notched section of the substrate, respectively.

In addition to the geometric experimental conditions, material properties of the composite specimen also

need to be specified before the thermal crack model (19)–(24) can be implemented. The three critical ma-

terial properties, also listed in Table 3, are:

1. Ultimate shear strength, sf : Under the assumption that the strength of the interface between the film and
substrate is higher than that the metal substrate, the ultimate shear strength is set at sf ¼ 0:233 GPa. This

value, as noted by Chen et al. (2000), is consistent with the yield strength of steel.

2. Residual stress, rres: As a result of the TiN deposition process, a significant compressive residual stress,

rres may be present in the coating (e.g. Shieu et al., 1998). As a result, the axial strain e imposed on the

TiN coating must be corrected to account for the residual stress. To this end, Su et al. (1998) and Chen

et al. (2000) among others used the concept of an effective strain

eeff ¼ e � rres

E
; ð28Þ

where E is the Young�s modulus of the coating. From measurements, Chen et al. (1999) report a value of

rres ¼ 10:4 GPa.

3. Tensile strength of the film, S: Chen et al. (2000) and other researchers (Su et al., 1998; Shieu et al., 1998)

calculate the tensile strength of the film as S ¼ ethreffE using the threshold effective strain in the coating,

ethreff , measured at the instant when cracks first appear. This approach, however, can be subjected to large

errors (see further discussion below), and in the current effort an alternative self-consistent approach is

used. In experimental works dealing with the cracking of thin films (Chen et al., 1999; Shieu et al., 1998),

Table 3

Experimental geometry and specimen properties after Chen et al. (1999, 2000)

h 1.3 lm
H 800 lm
k 10 mm

w 10 mm

E 500 GPa

m 0.2

S 0.853 GPa

rres 10.4 GPa

Eb 190 GPa

mb 0.3

sf 0.233 GPa
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it is observed that as the strain is increased, the crack spacing decreases up to a saturation point. Beyond

this saturation point, additional straining of the specimen does not result in a further decrease of crack

spacing. This behavior is consistent with the identification of the full-slip limit length scale, klim
s , discussed

above. Hence, if the average saturation spacing �kksat
o ¼ 0:75klim

s can be measured, the tensile strength of
the film will follow immediately from (25), i.e.

S ¼ 2�kksat
o sf
3h

ð29Þ

under the assumption that eeff does not vary across the film thickness. In their experimental work, Chen

et al. (1999) measure the average saturation crack spacing, below the point where spallation of the film

occurs, of �kksat
o ¼ 7:143 lm. This value used in (29) gives a tensile strength of S ¼ 0:853 GPa.

9.1. Comparison with thin film data

Owing to the fact that the crack spacing in thin films is typically several orders of magnitude smaller than

the specimen width, a common point of departure in the analysis of this class of problems is the assumption

of plane strain for the mid-line of the specimen (e.g. Chen et al., 2000), where the cracks are monitored. To

provide a basis for comparison, the crack spacing model developed in this study is applied to the thin film
data with the rod�s modulus Er, foundation stiffness k and temperature ‘‘drop’’ DT given by (18c), (19), and

aDT ¼ �ðe � rres=ErÞ, respectively. Consistent with the fact that the crack spacing in thin films is negligible

compared to the substrate thickness, the ratio k=hb in (19) is set to zero.

Fig. 10 plots the variation of crack density (i.e. number of cracks per mm) in the TiN coating versus

applied strain as calculated on the basis of (19)–(24) and Table 3. As a point of comparison, the experi-

mental observations (see Fig. 1 in Chen et al., 1999) are also shown in the display. Despite slight over

prediction, it is clear, without any attempt at fitting, that the thermal crack model (19)–(24) not only

matches the order of the observed cracking density, but also follows the correct trend with increasing strain.

9.2. Estimation of the film’s tensile strength

As noted earlier, an alternative to (29) for finding the tensile strain of the TiN coating, used in literature

(Su et al., 1998; Shieu et al., 1998; Chen et al., 2000), is to apply the uniaxial Hooke�s law at the instance
when cracks first appear, i.e. to set

Fig. 10. Observed versus predicted crack density in 1.3 lm-thin TiN coating.
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S ¼ Eethreff � Eethr � rres: ð30Þ

With reference to Fig. 10, the main drawback in using this approach is that the crack density changes very

rapidly near the onset of cracking, thus making it difficult to precisely identify the threshold strain, ethr, at
which cracks first appear. Furthermore, in many systems the value of Eethr and rres are of the same order. As

such, small changes of ethr in (30) will produce large changes in the predicted values of S. This is illustrated

in Table 4 by comparing the S values predicted by the saturation method (29) with values, taken from the

literature, using the Hooke�s law approach (30). As can be seen from the table, the predictions for S
stemming from the Hooke�s law approach (30) vary by a factor of 5 for essentially the same systems. In

contrast, calculation of S from the saturation model (29) provides values of the same order. The later values
could be considered to be low when compared with the Hooke�s law estimates. Note, however, that Su et al.

(1998), who have investigated the tensile strength of TiN coated cylinders in a similar manner to Chen et al.

(1999, 2000) and Shieu et al. (1998), arrive at a value of S ¼ 0:24 GPa. Hence the estimates of tensile

strength based on (29) are within the range of values reported for TiN coatings.

10. Summary and conclusions

In this paper, a one-dimensional model consisting of an elastic rod restrained axially by an elastoplastic

Winkler-type foundation was developed to predict the state of stress in a cooling pavement layer supported

by a cohesive-frictional base. It was found that when a layer of finite length is cooled, a non-uniform stress

field, increasing from the free ends and reaching a maximum at the center, results. The validity of the

Winkler-type assumption for the rod–base interaction was confirmed by comparison of stress predictions

with results from a two-dimensional numerical solution of an elastic layer supported by an elastoplastic
continuum.

Use of the one-dimensional model led to the identification of the crack spacing length scale, ks, asso-

ciated with a specified tensile strength, S, and temperature drop DT . The assumption that an initially

undamaged section, subjected to cooling, continues to crack and subdivide until the maximum stress level

between two adjacent cracks falls below the tensile strength S, resulted in bounds, in terms of ks, on the

expected spacing of thermal cracks. Comparisons, using reported material data for pavement systems, with

field observations of thermal cracks in pavements confirmed that the characteristic length obtained from

the stress model is of the correct scale.
The utility and robust nature of the thermal crack model was underscored by demonstrating that the

model is also suitable for predicting the average crack spacing in thin film coatings subjected to an in-

creasing axial strain; a system that exhibits crack spaces that are six orders of magnitude smaller than those

observed in pavements.

Appendix A. Calculation of the Winkler spring coefficient

In the absence of closed-form formulas describing the response of an elastic half-space due to lat-

eral surface tractions distributed over a rectangular strip, a convenient benchmark that can be used for
calibrating k is the corresponding plane-strain solution for a horizontal loading of ‘‘length’’ k acting on a

Table 4

Comparison of TiN tensile strength predictions

Paper h (lm) ethr (%) ksat
o (lm) rres (GPa) sf (GPa) E (GPa) S (29) (GPa) S (30) (GPa)

Chen et al. (1999, 2000) 1.3 2.54 7.143 10.4 0.233 500 0.853 2.4

Shieu et al. (1998) 1.0 4.00 8.333 12.8 0.233 640 1.294 12.8
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half-plane (see Fig. 11a). In the Figure, the shear tractions are assumed to follow a bi-linear distribution to

mimic the self-equilibrating contact stresses between the shrinking pavement strip and its foundation. On

employing the classical result in Poulos and Davis (1974) for the triangular variation of surface tractions,

the solution for the horizontal surface displacement (ubenx ) of the half-plane in Fig. 11a can be written as

ubenx ðxÞ ¼ qð1� m2bÞ
pEb

4x2 � k2

2k
log

k þ 2x
k � 2x

����
����

�
� 2x

�
; ðA:1Þ

where Eb and mb denote the Young�s modulus and Poisson�s ratio of the base material, respectively.

For comparison, Fig. 11b pictures the elastic Winkler foundation subjected to line loading which, cal-

culated per width w of the plane-strain problem, corresponds to the contact stress distribution in Fig. 11a.
To establish a similitude between the benchmark half-plane continuum and its Winkler-type analog, one

may select k so that their respective quarter-span displacements are equal, i.e.

ubenx ðk=4Þ ¼ uwinx ðk=4Þ: ðA:2Þ

On the basis of (A.1), (A.2) and the identity uwinx ðk=4Þ ¼ �qw=ð2kÞ, the spring coefficient k approximating

the continuum restraint for the shrinking pavement strip of length k can be written as

k ¼ 4pEbw
kð1� m2bÞð4þ 3 log 3Þ : ðA:3Þ

Beyond its direct relevance to the semi-infinite base continuum, formula (A.3) can also be used to

synthesize the stiffness of an elastic stratum with finite depth hb, provided that k � hb. In situations when

k � hb, on the other hand, (A.3) inherently overestimates the well-known limiting value for shallow strata,

namely k ¼ Gbw=h where Gb denotes the shear modulus of the elastic stratum supported rigidly from below.

To provide a unifying representation of k that is appropriate for both limiting cases, (A.3) is modified by
introducing a linear ‘‘correction’’ term, i.e.

(a)

(b)

Fig. 11. Benchmark model for evaluating the spring coefficient k.
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k ¼ 4pEbw
kð1� m2bÞð4þ 3 log 3Þ 1

�
þ ð4þ 3 log 3Þð1� mbÞ

8p
k
hb

�
: ðA:4Þ

One may observe that the proposed correction for the stratum thickness, hb, is similar in nature to the

formulas describing the horizontal stiffness of a rigid foundation on an elastic stratum (Gazetas, 1991).

Finally, it should be noted that even though k inherently depends on the rod width w via (A.4), the as-
sociated foundation-rod stiffness ratio b does not, since

b ¼
ffiffiffiffiffiffiffiffi
k

ErA

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pEb

khErð1� m2bÞð4þ 3 log 3Þ 1þ ð4þ 3 log 3Þð1� mbÞ
8p

k
hb

� �s
: ðA:5Þ
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